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Overview
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Carbon capture and storage, the short term option for reducing
CO, emissions, is likely to proceed with transportation from
source to storage along high-pressure dense phase pipelines

A The COOLTRANS Research Programme

A Near-field sonic dispersion of carbon dioxide (CO,) from
high pressure pipelines

A Thermodynamic model

A Numerical method

A Venting releases, with validation
A Puncture releases, with validation

A Rupture releases, with validation



COOLTRANS Research Programme
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A The electricity and gas global company National Grid's expertise in
building and running safe and effective pipeline networks could play a
critical role in helping the UK to meet its obligation to cut CO, emissions

through provision of CO, transport services to support deployment of
CCS technology.

A National Grid initiated the TRANSport of Liquid CO, (COOLTRANS)
Research Programme to address knowledge gaps relating to the safe
design and operation of onshore high pressure pipelines for transporting
liquid CO, from industrial emitters to storage sites offshore.

A Pragmatic quantified risk assessment (QRA) models

A As part of this programme, the University of Leeds undertook research
into the near-field sonic dispersion of CO, from an accidental puncture or
rupture of a high-pressure dense phase CO, pipeline.

A Robust source conditions for use in far-field CFD studies



Near-field dispersion model

A Thermodynamic model:
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(Wareing et al. 2013, AIChE Journal 59 3928-3942)
A Near-field dispersion of CO, in the gas, liquid and solid phases into dry
air.

A Novel composite equation of state for pure CO,, employing:-
A the Peng-Robinson equation of state in the gas phase;
A tabulated data derived from the Span & Wagner equation of state for
the liquid phase and vapour pressure;
A and NIST/DIPPR data for the solid phase and latent heat of fusion.

of temperature and molar volume, as all other thermodynamic properties
can be readily obtained from it.

A Calculations were undertaken using the Helmholtz free energy in terms
A Homogeneous equilibrium model, but a simple sub-model for relaxation

to equilibrium is required for the solid phase, as it would appear that the
particles are not sufficiently small enough to be in equilibrium.



Near-field dispersion model
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A Thermodynamic model (continued):

2.0F Gas
B g Alnternal energy on the
ool Tt saturation line.
-—;}‘ Liquid
3 AT_.. marks the critical
f‘% 201 temperature.
g Lok AThe triple point can be
£ identified by the steep
Solid connection between the
-6.0 liquid and solid phases i
the latent heat of fusion.
8.0 . . . .
100.0 150.0 200.0 250.0 300.0

T(K)



Near-field dispersion model
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A Numerical method:
A Adaptive, finite-volume grid algorithm with 2D or 3D rectangular mesh.

A Grid adaption achieved successive overlaying of refined layers of
computational mesh.

A Where steep gradients of variable exist, such as at the Mach shock in
this case, the mesh is more refined. This technique enables the
generation of fine grids in regions of high spatial and temporal variation.
Conversely, coarser grids are allowed where the flow field is smooth.

A Turbulence model: we employ a standard k-Umodel, but since
performance is poor for prediction of compressible flows, we include a
compressibility correction.

A Solutions obtained for the time-dependent, density-weighted equations.

A Efficient, general-purpose shock-capturing, upwind, second-order-
accurate Godunov numerical scheme with a HLL Riemann solver.



Near-field dispersion model
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A Numerical method (continued):
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Venting: dense phase release
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ADense phase release from a 150bar reservoir through 25mm (D) vent pipe.
ASteady state release conditions achieved by supplying a driving pressure
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Wareing et al., Int. J. Greenhouse Gas Control, 20, 254-271 (2014)



Venting: dense phase release
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Wareing et al., Int. J. Greenhouse Gas Control, 20, 254-271 (2014)




Venting: dense phase validation
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(a) 4m above the vent
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ACore temperature prediction in good agreement with data at 4m and 7m.
APredicted jet widths also in good agreement with data.
AA cross-wind of 2.5 m/s has led to some spread in the data at 7m.

Wareing et al., Int. J. Greenhouse Gas Control, 20, 254-271 (2014)



Venting: gas phase release
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AGas phase release from a 35bar reservoir through a 25mm vent pipe.
ASteady state release conditions achieved by supplying a driving pressure
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ADespite the considerably different temperature range observed as
compared to the dense phase release, predicted core jet temperatures and
widths are again in good agreement with the data on both planes

Wareing et al., Int. J. Greenhouse Gas Control, 20, 254-271 (2014)



Punctures of a buried pipeline

Experimental setup ol
- 0.9m diameter pipeline. ‘ :
- Pipeline pressurised to 150bar.
- 25mm diameter circular puncture. |
- Preformed craters based on (3) TOP
observations of real craters.
- Experimental measurements taken
on arrays 1m£i)nd 2m above ground level for the side puncture only.
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Wareing et al., Int. J. Greenhouse Gas Control, 29, 231-247 (2014)



Puncture results T side

(a) Data vs. model on 1m plane (c) Side puncture
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Puncture results i bottom and top
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(d) Bottom puncture T{C) (e) Top puncture
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Wareing et al., Int. J. Greenhouse Gas Control, 29, 231-247 (2014)



Ruptures of a buried pipeline
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Experimental setup
- 0.6m diameter pipeline.
- Pipeline pressurised to 150bar.
- Preformed craters based on
observations of real craters.
- Experimental measurements
on arrays above ground level.
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L=crater length, W =crater width, L’=length of flat base, W =width of flat base,
D =crater depth, B8=wall angle, A =semi-major axis of base ellipse, B =05W



